Reg. No.				
110g. 110.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., STATISTICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
VI	PART-III	CORE ELECTIVE	U21ST6E2A	NUMERICAL ANALYSIS

	& Sess	sion: 2	9.04.2025/FN Ti	me: 3 hours	Maximum: 75 Marks				
Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.						
CO1	K1	1.	Numerical techniques more	•					
			a) Elimination method	b) Reduction	n method				
			c) Iterative method	d) Direct me	ethod				
CO1	K2	2.	The Newton -Raphson methor						
			a) Secant method	b) Chord m	ethod				
			c) Diameter method	, ,					
CO2	K1	3.	The Gauss Jordan method r	educes a original ma	atrix into a				
			a) Identity matrix	b) Skew Her	mitian matrix				
			c) Non-symmetric matrix	<u>'</u>					
CO2	K2	4.	Which of these statements is	s incorrect about iter	rative methods?				
			a) Low computational cost	,	1				
			c) not suitable for sparse ma	atrices d) Needs i	initial guess				
CO3	K1	5.	1 + Δ=						
			a) E-1 b) 1/E	c) E	d) ∇				
CO3	K2	6.	If the data is equally spaced and interpolation is near the beginning of the data						
			then interpolation formula is used.						
			a) Newton's backward differe	•	n's divided difference				
			c) Lagrange's	d) Newton	a's forward difference				
CO4	K1	7.	Interpolation is done by						
			a) Curve fitting b) Regression analysis						
			c) Both (a) & (b)		of the mentioned				
CO4	K2	8.	Newton- Gregory Forward in	_	can be used				
			a) only for equally spaced intervals						
			b) only for unequally spaced intervals						
			c) for both equally and unequally spaced intervals						
			d) for unequally intervals						
CO5	K1	9.	The trapezoidal formula can						
			a) It composes prism and wedges						
			b) It composes triangles and parallelograms						
			c) It composes prism and parallelograms						
			d) It composes triangles and wedges						
CO5	K2	10.	Simpson's (1 /3)rd rule is ob	tained by putting n =	= in general				
			quadrature formula.						
			a) 1 b) 2	c) 3	d) 4				

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$							
CO1	КЗ	11a.	Discuss the Iteratio	Discuss the Iteration method.						
					2	(OR	,			
CO1	К3	11b.	Find the positive ro method.	Find the positive root of $x^3 - x = 1$ correct to four decimal places by bisection method.						
CO2	КЗ	12a.	Solve the system of	equa	tions by	Gauss el	iminatio	on method	1.	
			$x + 2y + z = 3, \qquad 2x$	x + 2y + z = 3, $2x + 3y + 3z = 10$, $3x - y + 2z = 13$.						
			(OR)							
CO2	КЗ	12b.	Derive the Gauss-Siedel iteration method.							
CO3	K4	13a.	Prove that the operators Δ , ∇ , E , δ , μ and D are all linear operators.							
			(OR)							
CO3	K4	13b.	Write the properties of the operator Δ .							
CO4	K4	14a.	Highlight the advantages of central difference interpolation formulae.							
			(OR)							
CO4	K4	14b.	Using Lagrange's interpolation formula, find $y(10)$ from the following table.							
				x	5	6	9	11		
					_		_			
				Y	12	13	14	16		
CO5	K5	15a.	Explain maxima an	d mir	nima of a	Tabulat	ed funct	ion		
	110	100.	Explain maxima and minima of a Tabulated function. (OR)							
CO5	K5	15b.	Explain Simpson's one-third rule.							

Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$						
CO1	КЗ	16a.	Solve the equation $x^3 + x^2 - 1 = 0$ for the positive root by Iteration method.						
CO1	КЗ	16b.	Find the positive root of $f(x) = 2x^3 - 3x - 6 = 0$ by Newton -Raph	hson method					
			correct to five decimal places.						
CO2	K4	17a.	Solve the system using Gauss elimination method.						
			2x + 3y - z = 5						
			4x + 4y - 3z = 3						
			2x - 3y + 2z = 2						
			(OR)						
CO2	K4	17b.	Solve the following equation using Gauss Jacobi iteration method.						
				30x - 2y + 3z = 75					
			x + 17y - 2z = 48						
			x + y + 9z = 15						
CO3	K4	18a.	Discuss the various differences operators and its properties.						
CO3	K4	18b.	(OR) State the fundamental theorem for finite differences and its applications.						
CO4	K5	19a.	Derive the Newton's forward interpolation formula.						
			(OR)						
CO4	K5	19b.	Derive the Gauss's forward formula for interpolation.						
CO5	K5	20a.	Find the first two derivatives of $(x)^{1/3}$ at $x = 50$ and $x = 56$ given the table below						
			(using Newton's forward and backward difference formula).						
			X 50 51 52 53 54 55	5 56					
			$y = (x)^{1/3}$ 3.6840 3.7084 3.7325 3.756 3.7798 3.86	8030 3.8259					
			(OR)						
CO5	K5	20b.	Derive the Simpson's three-eight rule.						
			rs.s.s.						